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Abstract — Epileptic seizures correspond to episodes of in-
creased rhythmicity of the normally chaotic activity in bi-
ological neural networks. We propose to use hybrid neural
networks where artificial neural networks are used to con-
trol the biological neural networks by learning their differ-
ent states. The learning is dramatically accelerated when
using a conjugate gradient method in conjunction with the
Fletcher-Reeves method of optimization.
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I. INTRODUCTION

In the healthy brain, the pattern of electrical activity
is complex and chaotic. The onset of an epileptic seizure
is characterized by rhythmic activity of lower complexity
as shown in Figure 1. If neuronal dynamics are controlled
to ensure that high complexity activity is maintained then
we can achieve suppression of seizures. A brain chaos-
maker would act to break the rhythmic electrical activity
and thereby suppress epileptic seizures.

Considerable attention has been given by many groups
[1], [2] to the possibility of exploiting the theory of nonlin-
ear dynamical systems to control epilepsy . It is believed
that breaking the rhythmic activity will provide a thera-
peutic intervention against epileptic seizures. The long-
term objective of this research is to develop a device which
is capable of learning the healthy chaotic dynamics of a
small part of the brain and detect a change to a rhyth-
mic pattern of activity. Once rhythmicity is detected the
device would deliver an electrical stimulus which would re-
store chaotic activity. In order for such a chaosmaker to
be relevant, its function must not rely on knowledge of the
system equations, as these equations are not available for
biological neural networks (BNNs). The strategy must be
based solely on information provided by a measured time
series of the brain’s electrical activity. Thus we begin our
development of these strategies with the development of
a time series model capable of learning chaotic dynamics
using artificial neural networks (ANNs). This would al-
low (a) detection of state transitions between chaotic and
rhythmic states, and (b) delivering the appropriate stimuli
to restore the chaotic state in such hybrid neural networks
(HNNs) where BNNs are controllable by ANNs. Such a
strategy preassumes that the learning of BNNs’ states by
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Fig. 1. The transmembrane voltage of a CA3 neuron in the rat

hippocampal slice under conditions of zero calcium in the bathing
solution (top trace), with a typical burst from the transmembrane
voltage recording (bottom trace).

the ANNs can be accomplished quickly to allow for the
required adaptivity. Traditional learning paradigms were
found to be too slow to be feasible. Hence, we have identi-
fied the need for acceleration of the learning process.

In this paper, we compare the efficiency of learning in
feedforward artificial neural networks using three different
optimization algorithms: (i) Gradient Descent with Mo-
mentum (GDM), (ii) Conjugate Gradient Fletcher-Powell
(CG/FP) and (iii) Modified Conjugate Gradient Fletcher-
Reeves (CG/FR) [3]. Most nonlinear optimization strate-
gies utilize nonlinear approaches for finding search direc-
tions (such as GDM, CG/FP and CG/FR) and linear ap-
proaches for finding step sizes (a.k.a. learning rates) along
the search directions (such as GDM and CG/FP). As an al-
ternative technique to linear line search methods, the step
size of the Modified (CG/FR) method is not selected based
on criteria to reach a minima along each search direction.
Rather, it is chosen to satisfy an inequality constraint based
on the criteria that the eigenvalues of the estimated inverse
Hessian matrix must tend monotonically to those of the
actual inverse Hessian matrix. Simulations are performed
on two classification problems, digit recognition and sig-
nal classification network. With exit condition fixed for
training, the simulations show that drastic acceleration of
learning can be obtained while maintaining good network
generalization ability when the CG/FR optimization tech-
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nique is used.

II. METHODS

Learning in artificial neural networks can be formulated as
an optimization problem where the objective is to minimize
a mean-squared error (MSE) function of the form

N
1
E(w) = I Z(y(w,xl) — d;)? (1)
i=1
defined on a training set

T ={w;,d;}, fori=1,2,..,N (2)

where w is the vector of synaptic weights, IV is the size of
the training set, x; is the input, d; is the desired output,
and y(w, z;) is the actual output.

The objective of the learning is to find a set of weights
w* which minimizes the objective function F(w) or re-
duces it to a satisfactory level. The standard approach for
solving such problems is to regard the objective function
as an n-dimensional surface in the weights space and to
employ algorithms which repeatedly take steps along this
surface which are in the downhill direction until a mini-
mum is reached. In gradient-based optimization methods,
such search directions §; are functions of the gradient of
the objective function F(w) with respect to the synaptic
weights. Such methods have a learning rule for iterative
updating of the synaptic weights vector of the form

Wil = Wi + 01.0% (3)

where 0, is the learning rate (or step size) and dj is the
direction of search at the kth iteration.

The GDM and CG/FP methods utilize a full linear
search for finding the step size 6 which minimizes E(w)
along the search direction §;. On the other hand, the Mod-
ified Conjugate Gradient Fletcher-Reeves (CG/FR) does
not utilize a full linear search to find 6, and instead it
is chosen to satisfy an inequality constraint based on the
criteria that the eigenvalues of the estimated inverse Hes-
sian matrix must tend monotonically to those of the actual
inverse Hessian matrix.

III. RESULTS

The three learning paradigms were tested using a feedfor-
ward neural network (with 10690 synaptic weights, 256 in-
put neural units and one layer of 40 hidden neural units)
to perform a standard digit recognition task where the de-
sired outputs d; are as shown in Figure 2. The three learn-
ing paradigms were started from the same initial starting
point with the MSE = 1 at the zeroth iteration. The
learning was specified to be completed when a target level
of MSFE = 0.01 was reached. The target value of the mean
squared error for the three learning paradigms was reached
after {7121, 355 and 66} iterations for the {GDM, CG/FP
and CG/FR}, respectively. This suggests a dramatic ac-
celeration of learning when using the CG/FR paradigm as

Fig. 2. A digit recognition task used as an example to compare the
speed of learning using the three learning paradigms.

shown in Figure 3. The synaptic weights are depicted in
Figure 4.
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Fig. 3. The comparison of the three methods of optimization used in the learning phase. The specified mean squared error (MSE = 0.01)
for the three learning paradigms is reached after {7121, 355 and 66} iterations for the {GDM, CG/FP and CG/FR}, respectively. Note
that at the zeroth iteration, the three methods were started at an initial MSE=1, but the three paradigms had different MSEs after the first
iteration.
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Fig. 4. The histograms of the synaptic weights using the three learning paradigms.



IV. DISCcUSSION

One perspective on the problem of maintaining chaos in
biological systems is that of Schiff et al. [2], who attempted
to anticontrol chaos in the rat hippocampal slice. They
used linear regression to fit eigenvectors and find an unsta-
ble saddle point in the first return map of the interspike
interval. Their efforts to maintain chaos in the neuronal
tissue was limited to eliciting action potentials, through
stimulation, such that the interspike interval landed off the
eigenvectors. Their perspective was one of increasing the
variability in the neuronal activity over that observed by
their model.

In our approach, the concept of targeting introduced by
Shinbrot et al. [4] is used. Once stabilization is detected,
the ANN is used to iterate a population of trajectories orig-
inating within an e neighbourhood of the current position
of the BNN’s state in the state space. These iterations form
an approximation to the chaotic BNN dynamics.

The control algorithm waits until a placement of the out-
put causes the observed System dynamics to fall directly
onto the ANNs approximation of the BNN’s unstable man-
ifold. This action causes a temporary return to chaotic ac-
tivity by perturbing the BNN’s dynamics out of the stable
region of state space and into the chaotic region.

Comparing our approach to that of Schiff et al., we see
that both strategies employ model estimation from time se-
ries and make perturbations directly to the system variable.
However, unlike our strategy, Schiff et al. do not consider
the system as having gone through a transition. They fo-
cus their efforts on learning the low dimensional epileptic
dynamics, whereas we focus on learning the higher com-
plexity dynamics of the healthy activity. Our advantage is
that once a transition to rhythmicity is detected, the ini-
tiation of a control action may begin immediately without
a lengthy learning stage during the seizure activity. The
approach of Schiff et al. has the advantage of learning
the less complex dynamics which could be a considerably
easier task than learning the high complexity dynamics.
Nevertheless, the use of the accelerated learning paradigm
described in this paper, may render the learning of the
higher complexity dynamics, feasible.

The choice of time series model is a second point of com-
parison between our approach and that of Schiff et al.. The
algorithm of Schiff et al. learn the local dynamics of a un-
stable periodic orbit (UPO) by fitting linear eigenvectors in
the two dimensional first return map. The goal of our ANN
model is to learn the global dynamics of the chaotic system
representable in any dimension. The literature regarding
the detection of nonlinearities in neuronal activity largely
suggests that embedding the interspike interval in a two
dimensional state space will result in a significant number
of false nearest neighbours, complicating the learning of
deterministic dynamics. In the applications of chaos con-
trol algorithms, the local dynamics may be well described
by the two dimensional linear model; however in instances
of anticontrol, the dynamics of interest are those of the
greater chaotic attractor and not the local dynamics.

V. CONCLUSION

In conclusion, we have developed a novel approach to a
potential therapy for epileptic disorders. The strategy is to
learn the global dynamics of the healthy chaotic systems
and their transition to rhythmicity in BNNs using ANNs.
Such learning is accelerated significantly using a conjugate
gradient method without performing a full linear search for
the minimum, along the direction of search, in each itera-
tion. Whenever rhythmicity in the BNN is detected, the
control strategy employs the ANN to estimate the unstable
manifold of the rhythmic orbit upon which it will place the
state vector. This has the effect of restoring the BNN to
its chaotic state.
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